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The eigenvalues of certain self-adjoint random matrices can be described as de-

terminantal random point fields (also known as determinantal point processes–
see, e.g., Hough et al.) through their correlation functions. This paper extends
work by Tracy and Widom who introduced differential equations and deter-
minantal processes for the study of eigenvalues of random matrices. Given
an integral operator on L2(R) with kernel K(x, y), Soshnikov showed that
ρn(x1, . . . , xn) := det[K(xj , xk)]nj,k=1, n = 1, 2, . . . , are correlation functions
of a determinantal point process if 0 ≤ K ≤ 1 and if the restriction of K on
each rectangle [a, b]× [a, b] defines a trace class operator. In other words, there
exists a point process ν such that

E
[
(ν(B1))n1 · · · (ν(Bk))nk

]
=

∫
B

n1
1 ×···×B

nk
k

ρn(x1, . . . , xn)dx1 · · · dxn,

where E denotes expectations, ν(B) denotes the number of random points on
the Borel set B, and (m)n := m(m − 1)(m − 2) · · · (m − n + 1). In the above,
B1, . . . , Bk are pairwise disjoint Borel sets and n = n1 + · · · + nk. Further-
more, the probability generating function of the number of points ν(a, b) on the
(possibly infinite) interval (a, b) is given by

E[zν(a,b)] = det(I + (z − 1)P(a,b)KP(a,b)),

where P(a,b)f(x) := f(x)1(a,b)(x) is the natural projection operator.
For example, kernels K in random matrix theory [see Mehta] are typically of

1



the form

K(x, y) =
f(x)g(y)− f(y)g(x)

x− y
,

with the 2-tuple (f(x), g(x)) satisfying a system of linear differential equations
with x-dependent (polynomial) coefficients; e,g. K(x−y) = (x−y)−1 sin(x−y)
for the Gaussian unitary ensemble (GUE).

In this paper, the kernel K defining a determinantal point process ν on (0,∞)
is constructed by means of, possibly infinite-dimensional, linear systems, as
follows. Let H (the state space) and H0 be (complex) separable Hilbert spaces;
often, H0 = C. Consider a linear system whose trajectory X evolves in H, takes
inputs from H0 and gives outputs in H0:

dX

dt
= −AX +BU, Y = CX, t > 0, X(0) = 0.

One says that the system is defined by the triple (−A,B,C). It it is assumed
that certain natural conditions hold, e.g., that the semigroup (e−tA, t ≥ 0) is
bounded C0 on H, that the range of B is contained in the domain of −A, and
that C is defined on this domain. The shifted system at time x > 0 is defined
by the triple (−A, e−xAB,Ce−xA). Let φ(t) := Ce−tAB be the input-output
operator for (−A,B,C) and φ(x)(t) the input-output operator for the shifted
system. Let the Hankel operator Γφ be defined by Γφf(t) :=

∫∞
0
φ(t+s)f(s)ds,

where f belongs to some dense linear subspace of L2(R+,H) or L2(R+,H0).
The corresponding operator for the shifted system is Γφ(x) . Introduce the con-
trollability and observability Gramians by L0 :=

∫∞
0
e−tABB†e−tA†

dt, Q0 =∫∞
t
e−tA†

C†Ce−tAdt, respectively, for the original system, and let Lx, Qx be
the corresponding Gramians for the shifted system. Assume that they are of
trace class and have operator norms strictly less than one.

The main theorem of the paper consists of three parts:
(i) In the self-dual case, i.e. when A = A†, C = B†, φ(t) = B†e−AtB, there is
a determinantal point process ν such that gx(z) := E[zν(x,∞)] = det(I + (z −
1)Γφ(x)), x > 0.
(ii) In the general case, there is a determinantal point process ν such that
gx(z) := E[zν(x,∞)] = det(I + (z − 1)Γφ(x)Γ

†
φ(x)

).
(iii) In the real case, there is a determinantal point process ν such that gx(z) :=
E[zν(x,∞)] = det(I + (z − 1)Γ2

φ(x)
).

Furthermore, in each case, it is shown that d
dx log gx(z) is related to the solu-

tion of a Gelfand-Levitan integral equation. E.g., in case (i), d
dx log gx(z) =

Tz−1(x, x), where the kernel Tλ(x, y) satisfies

Tλ(x, y) + λφ(x+ y) + λ

∫ ∞

x

Tλ(x, u)φ(u+ y)du = 0, 0 < x ≤ y, |λ| < 1.
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Similar equations hold in cases (ii) and (iii) also. The theorem is stated in the
Introduction and proved in Sections 5 (cases (i) and (iii)) and 6 (case (ii)).

Section 3 is concerned with showing how some interesting kernels K (e.g., spa-
tial kernels associated to Hamiltonian systems) factorize as ΓΓ† which allows
the construction of determinantal point processes with these kernels. An appli-
cation to the eigenvalue problem −ψ′′+qψ = λψ, associated with Schrödinger’s
equation with smooth compactly-supported potential q, is considered in Section
4. Use is made of McKean’s results on the spectrum of the Schrödinger oper-
ator on L2(R) which define the scattering map q 7→ φ. The inverse scattering
problem (c.f. Zakharov and Shabat) considered here seeks a linear system com-
patible with the scattering data; from it, a Gelfand-Levitan kernel is obtained,
via which q is recovered. Finally, Section 7 considers the case when q evolves
under the Korteweg-de Vries flow 4∂u

∂t = ∂3u
∂x3 − 6u2 ∂u

∂x and examines how the
determinantal point process evolves under the corresponding flow in the scat-
tering data. It is also noted that when q(x) = −2 sech2 x then the probability
distribution function of the largest point of the corresponding determinantal
point process is logistic.
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